イマコト

最新の記事から注目のキーワードをピックアップ!

Article Detail

東北大など、テラヘルツ光で電気分極の量子波の観測に成功

2013-02-22

テラヘルツ光で電気分極の量子波の観測に成功
〜電子型有機誘電体における新しい準粒子の発見と光増殖効果〜


<背景>
 真空中の電子は、もっともよく知られた素粒子の一つですが、物質中においては、単独の粒子としてではなく、周りに存在するたくさんの電子や原子との相互作用によって集団的に運動します。このような多数の電子や原子の集団は、量子力学的(波としての性質を持つ)な粒子(準粒子(注1))として理解することができます。例えば、原子の変位が波として伝わる音波(フォノン)や、磁気の波である(マグノン)などはその代表的な例です。物質ごとに異なる準粒子を発見することは、物質の電気的、磁気的な性質を、光、電場、磁場などの外場によって制御するために不可欠なことです。
 強誘電体(注2)は、メモリやピエゾ素子などへの応用で広く知られています。従来の強誘電体では、電気の偏り(分極)が、原子やイオンの変位の向きが同じ方向に配列(秩序化)することによって生じていました。一方、最近注目されている電子型誘電体(注3)では、通常の誘電体のように原子の移動や分子の配列ではなく、電子雲の変形によって分極が形成されているので、これまでより1000倍も速い制御が可能となります。しかし、この電子型誘電体において準粒子は見つかっていませんでした。


<研究内容>
 本研究では、テラヘルツ光と呼ばれる光の周波数が1THz(テラヘルツ)程度の遠赤外線のパルス光(パルス幅〜1兆分の1秒(1ピコ秒))を用いて、電気分極の集団応答による準粒子を捉えることに成功しました。本研究で使用した物質は、有機パイ電子系(注4)の誘電体κ−(BEDT−TTF)2Cu2(CN)3(図1)(注5)です。テラヘルツ時間領域分光(図2、注6)によって測定された光学伝導度スペクトル(図3(a)中の赤丸印、拡大図は、図3(b))は、1THz付近に特徴的なピークを持ちます。このピークは、これまでに電気的な測定によって得られた電気分極の温度依存性や、理論的に予測される準粒子の光電場の振動方向に対する依存性との一致から、図3(c)に示すように電気分極の集団が、波として一糸乱れずに伝わっていく新しい準粒子によるものであることがわかりました。通常この周波数領域にみられるのはフォノンによるピークですが、それに比べるとはるかに幅が広く、しかも中央部に、フォノンとの量子力学的な相互作用(干渉効果)を示す大きな窪みが見られます。
 本研究では、さらに、この新たに見つかった準粒子が、近赤外光の照射によって増殖することを発見しました。このことは、以下に示すように、電気分極が、近赤外光の照射によって秩序化することを意味します。図3(d)に示すように、温度を下げると、電気分極の準粒子によるテラヘルツ応答の強度は増大し、低温で準粒子が増殖する、すなわち電気分極が秩序化している領域が大きくなり電気分極集団のドメインとして成長することを示しています。その模式図を図4(a)に示します。注目すべきことに、近赤外のフェムト秒パルス光をこの物質に照射した場合でも、準粒子によるテラヘルツ応答は増大することがわかりました。つまり、光の照射によって電気分極の集団が実効的に冷却され、図4(b)のように、温度を下げた場合と同様にこのドメインが成長するわけです。
 光の照射によって物質の電子の秩序が変化する現象は、光誘起相転移(注7)と呼ばれ、将来の超高速光スイッチ応用などへの期待から精力的な研究が世界中で行われています。通常、光の照射は電子の有効温度を上昇させるため、秩序を融解させます。しかし、本研究で観測された準粒子の光増殖は、逆に光照射によって電子を冷却し、秩序を成長させることが可能であることを示しました。
 このような特異な現象は、κ−(BEDT−TTF)2Cu2(CN)3の電子が、柔らかくフレキシブルな性質を持っていることに由来します。理論的な解析により、このκ−(BEDT−TTF)2Cu2(CN)3は、二つの異なる秩序状態が接する境界付近にあるため、電子が柔らかな状態にあることがわかってきました。この電子のフレキシブルな性質が、テラヘルツ光やフェムト秒光パルス光の刺激で増強され、電気分極集団の波(準粒子)としての振る舞いや秩序の増大などのこれまで知られていなかった光応答を導いていると考えられます。


<今後の展開>
 “電子型誘電性”は、原子やイオンの変位を起源とする従来的な誘電性とは本質的に異なった原理による新しいタイプの誘電性です。そこでは、従来の誘電体には見られない、光を用いた電子(電荷とスピン)の複合した秩序(マルチフェロイクス(注8))の新しい光、テラヘルツ応答現象の開拓や将来の超高速光メモリへの応用が期待されます。本研究で発見された、光による分極集団の冷却(秩序の増大)は、強誘電性だけでなく、超伝導や強磁性などの多重な秩序を光で制御する“超高速オプトフェロイクス”の開拓へつながることが期待できます。
 本研究は、物質開拓(東北大金属材料研究所)、先端光計測(東北大大学院理学研究科、情報通信機構、科学技術振興機構)、理論解析(東北大大学院理学研究科)という異なる研究分野の研究者が連携することによって行われました。


<論文名>
 “Collective excitation of electronic dipole on molecular dimer in organic dimer−Mott insulator”
 (有機ダイマーモット絶縁体におけるダイマー内電気双極子の集団励起)


※用語説明・図1〜5は、添付の関連資料「参考資料」を参照

Related Contents

関連書籍

  • 死ぬまでに行きたい! 世界の絶景

    死ぬまでに行きたい! 世界の絶景

    詩歩2013-07-31

    Amazon Kindle版
  • 星空風景 (SKYSCAPE PHOTOBOOK)

    星空風景 (SKYSCAPE PHOTOBOOK)

    前田 徳彦2014-09-02

    Amazon Kindle版
  • ロンドン写真集 (撮影数100):ヨーロッパシリーズ1

    ロンドン写真集 (撮影数100):ヨーロッパシリーズ1

    大久保 明2014-08-12

    Amazon Kindle版
  • BLUE MOMENT

    BLUE MOMENT

    吉村 和敏2007-12-13

    Amazon Kindle版